Wayfinding in Assisted Living Homes

Wayfinding in Assisted Living Homes

Rebecca Davis, professor and researcher at the Grand Valley State University, received a research grant from the National Institute of Health to research how patients with Alzheimers disease navigate their living space. Assisted living homes can be drab or nondescript with long hallways adding to the confusion and frustration for those living in these homes. To research this problem and possible solutions, Davis recruited 40 people in the early stages of Alzheimer’s and 40 without the disease to virtually walk through a simulation of an actual assisted living home in the MIDEN. Staff and students at the Duderstadt Center modeled a 3D environment to re-create details such as the complicated lighting or maze-like hallways, to create a natural and immersive experience. This allows users to fully experience how the color schemes, lighting, and wall detail can affect the experience of living in the home. Various “visual cues” are placed throughout the space at key locations to determine if these help the subject in remembering which paths lead to where they need to go. Rebecca currently utilizes two environments in her study, one with visual cues and one without. Subjects are shown the path they must go to reach a destination and then given an opportunity to travel there themselves-if they can remember how.

PictureIt: Epistles of Paul Released on iTunes

PictureIt: Epistles of Paul Released on iTunes

Get the App!

Welcome to the world of second century C.E. Egypt. This app will allow you to leaf through pages of the world’s oldest existing manuscript of the letters of St. Paul (P.Mich.inv.6238, also known in NT scholarship as P46). Thirty leaves of this manuscript, written in about 200 C.E., were found in Egypt and purchased by the University of Michigan Papyrology Collection in 1931 and 1933 (another 56 leaves, not included in this app, are housed in the Chester Beatty Library, Dublin; 18 leaves are missing completely).

The app will give you the feel of what it was like reading an ancient Greek book on papyrus, where the text is written without word division, punctuation, headings, or chapter and verse numbers. To aid the reader without knowledge of ancient Greek the translation mode will give a literal translation of the Greek text preserved on these pages (with addition of chapter and verse numbers), with explanatory notes showing where this text is different from the Standard text.

Kinect in Virtual Reality – M.I.D.E.N. Test

Kinect in Virtual Reality – M.I.D.E.N. Test


The Kinect exploded on the gaming and natural user interface scene. People had it hacked within a few days and a collective desire to see how a depth sensing camera can be used was born. Caught up in the same energy the Duderstadt Center started playing with the hacks coming out and seeing how they could be used with other technology. After some initial tests, and the release of the official SDK from Microsoft, we dove into deeper development with the device.

In an effort to improve interactivity in the MIDEN, the Kinect has been applied as a way of representing the physical body in a virtual space. By analyzing the data received from the Kinect, the Duderstadt Center’s rendering engine can create a digital model of the body. This body represents an avatar that corresponds to the user’s location in space, allowing them to interact with virtual objects. Because the MIDEN offers the user perspective and depth perception, interaction feels more natural than maneuvering an avatar on a screen; the user can reach out and directly “touch” objects.

SCI-Hard Mobile Game

SCI-Hard Mobile Game

Those with spinal cord injuries (SCI), often males ages 15-25, encounter a drastically different world when they are released from the hospital. With varying degrees of disability, mobility and function, the world around them becomes a collection of physical and mental challenges which is a complete departure from their previous lifestyles. Whether they are in crutches or manual/automatic wheelchairs, they need to learn mobility, scheduling, and social tasks once again. Stairs may now be an unsurmountable obstacle. The individual may receive glaring looks from others on the street or be taunted by children. Daily activities often surround the scheduling of their colostomy bag. The list goes on.

This project was initially the conceptualization of several ideas for a complete “manual” to be used by health care professionals working with individuals with SCI. It has since been turned into a larger development effort which has recently been funded by the U.S. Department of Education. This extension of the project would involve the development of a game which teaches those with SCI the necessary skills they need to now learn in a fun, edgy way. Tasks such as scheduling, mobility, and social interaction all become elements of the game as the player builds up their character’s abilities and opens up new locations and mini-games they can do.

Tech Demo – Realistic “Spooky” Cellar with Physical Interactions

Tech Demo – Realistic “Spooky” Cellar with Physical Interactions

Spooksville, a haunting and dimly lit basement environment, was originally designed by Andrew Hamilton, optimized  developed by the Duderstadt Center, and brought into the MIDEN as an experiment in immersive environments. The user in this environment can walk up rickety stairs, see the cobwebbed and otherwise grimey surfaces in a basement, and knock over old paint cans, sending them tumbling down the stairs in a life-like manner.

The real-time interaction creates the feeling of truly being immersed–try to knock cans on the virtual floor, forgetting where the physical floor is, and you might knock the controller (now taped and re-taped) or go too quickly up the stairs or step off the ledge and you might feel woozy. An earlier version featured localized spooky sounds right next to the leading viewer and floating apparitions just out of the corner of the user’s eyes. Enter at your own risk.

Virtual Jet Ski Driving Simulator

Virtual Jet Ski Driving Simulator

The Virtual Jet Ski Driving Simulator allows a user to drive a jet ski (or personal watercraft) through a lake environment that is presented in an immersive virtual reality MIDEN system. The user sits on a jet ski mockup and controls the ride via handlebar and throttle. While the mockup is stationary (does not move), the environment changes dynamically in response to handlebar and throttle operation, thereby, creating the feeling of jet ski driving in a very convincing way. The virtual reality system provides head-referenced stereo viewing and a realistic, full scale representation of the environment.

The simulator was developed to study human risk factors related to the operation of a personal watercraft (PWC). In recreational boating, PWCs are involved in accidents in disproportional numbers. Using the simulator, accident scenarios can be simulated and the reaction of PWC operators in specific situations can be studied. The simulator provides a cost-effective analysis tool for regulators and equipment designers as well as a training device for PWC operators, enforcers, and educators.

The simulator was developed for the U.S. Coast Guard (USCG) by the University of Michigan Virtual Reality Laboratory and the Research Triangle Institute. It is now in the process of being revived through help from the Undergraduate Research Opportunity Program (UROP)

Remote Dance Performances

Remote Dance Performances

Shortly after the acquisition of the University of Michigan’s first motion capture system faculty and students began exploring its use for the performing arts. One such project involved two dancers who coordinated their performances remotely. With one dancer performing in the MIDEN and the other in the Video Studio they effectively created a complete performance. The MIDEN performer wore our motion capture suit and had their point cloud (visualization of just her joints) streamed to the Video Studio where the other dancer was performing.

Another project related to remote performances involved a faculty member from the school of music who specialized in jazz compositions. He conducted a collection of performers remotely using methods similar to the dancers above. One unique challenge was the expressiveness and articulation of the composers hands and face. To solve this we placed additional markers on his face and hands so the remote musicians could identify his facial expressions and hand poses.