Students Learn 3D Modeling for Virtual Reality

Students Learn 3D Modeling for Virtual Reality

making tiny worlds

Stephanie O’Malley


ArtDes240 is course offered by the Stamps School of Art & Design and taught by Stephanie O’Malley that teaches students 3D modeling & animation.  As one of only a few 3D digital classes offered at the University of Michigan, AD240 sees student interest from several schools across campus with students looking to gain a better understanding of 3D art as it pertains to the video game industry.

The students in AD240 are given a crash-course in 3D modeling in 3D Studio Max and level creation within the Unreal Editor. It is then within Unreal that all of their objects are positioned, terrain is sculpted, and atmospheric effects such as time of day, weather, or fog can be added.

“Candyland” – Elise Haadsma & Heidi Liu, developed using 3D Studio Max and Unreal Engine
“Candyland” – Elise Haadsma & Heidi Liu, developed using 3D Studio Max and Unreal Engine

With just 5 weeks to model their entire environment, bring it into Unreal,  package it as an executable, and test it in the MIDEN (or on the Oculus Rift), the resulting student projects were truly impressive. Art & Design Students Elise Haadsma & Heidi Liu took inspiration from the classic board game, “Candyland” to create a life-size game board environment in Unreal consisting of a lollipop forest, mountains of Hershey’s kisses, even a gingerbread house and chocolate river.

Lindsay Balaka  from the School of Music, Theater & Dance, chose to create her scene using the Duderstadt Center’s in-house rendering software “Jugular” instead of Unreal Engine-Her creation, “Galaxy Cakes”, is a highly stylized (reminiscent of an episode of the 1960’s cartoon, The Jetson’s) cupcake shop, complete with spatial audio emanating from the corner Jukebox.

Lindsay Balaka’s “Galaxy Cakes” environment
An abandoned school, created by Vicki Liu in 3D Studio Max and Unreal Engine

Vicki Liu, also of Art & Design, created a realistic horror scene using Unreal. After navigating down a poorly lit hallway of an abandoned nursery school, you will find yourself in a run down classroom inhabited by some kind of mad man. A tally of days passed has been scratched into the walls, an eerie message scrawled onto the chalkboard, and furniture haphazardly barricades the windows.

While the goal of the final project was to create a traversible environment for virtual reality, some students took it a step further.

Art & Design student Gus Schissler created an environment composed of neurons in Unreal intended for viewing within the Oculus Rift. He then integrated data from an Epoch neurotransmitter (a device capable of reading brain waves) to allow the viewer to telepathically interact with the environment. The viewers mood when picked up by the Epoch not only changed the way the environment looked by adjusting the intensities of the light being emitted by the neurons, but also allowed the viewer to think specific commands (push, pull, etc) in order to navigate their way past various obstacles in the environment.

Students spend the last two weeks of the semester scheduling time with Ted Hall and Sean Petty to test their scenes and ensure everything runs and looks correctly on the day of their presentations. This was a class that not just introduced students to the design process, but to also allowed them to get hands on experience with upcoming technologies as virtual reality continues to expand in the game and film industries.

Student Gus Schissler demonstrates his Neuron environment for Oculus Rift that uses inputs from an Epoch neurotransmitter to interact.

Student Uses Photogrammetry to Miniaturize Herself

Stamps Student Uses Photogrammetry to Miniaturize Herself

  Stamps student Annie Turpin came to the Duderstadt Center with an idea for her Sophomore studio project: She wanted to create a hologram system, similar to the “Pepper’s Pyramid” or “Pepper’s Ghost” display, that would allow her to project a miniaturized version of herself into a pinhole camera.

Pepper’s Ghost relied on carefully placed mirrors to give the illusion of a transparent figure

  The concept of Pepper’s Pyramid is derived from an illusion technique created by John Henry Pepper in 1862. Originally coined “Pepper’s Ghost”, the trick initially relied on a large pane of glass to reflect an illuminated room or person that was hidden from view. This gave the impression of a “ghost” and became a technique frequently used in theatre to create a phantasmagoria. Similar methods are still used today, often substituting Mylar foil in place of glass and using CG content (such as the 2012 Coachella performance, in which a “holographic” Tupac was resurrected to sing alongside Dr. Dre).

Pepper’s Pyramid takes the concept of Pepper’s Ghost, and gives it 3 dimensions using a pyramid of Plexiglas instead of mirrors.

  “Pepper’s Pyramid” is a similar concept. Instead of a single pane of glass reflecting a single angle, a video is duplicated 4 times and projected downward onto a pyramid of Plexiglas, allowing the illusion to be viewed from multiple angles and for the content to be animated.

  For Annie’s project, she re-created a small version of Pepper’s Pyramid to fit inside a pinhole camera that she had constructed, and used a mobile phone to project the video instead of a monitor. She then had herself 3D scanned using the Duderstadt Center’s Photogrammetry rig to generate a realistic 3D model of herself that was animated and then exported as an MP4 video.

Annie’s pinhole camera

  The process of Photogrammetry allows an existing object or person to be converted into a full color, highly detailed, 3D model. This is done using a series of digital photographs captured 360 degrees around the subject. While Photogrammetry can be done at home for most static subjects, the Duderstadt Center’s Photogrammetry resources are set up to allow moving subjects like people to be scanned as well. The process using surface detail on the subject to plot points in 3D space and construct a 3D model. For scans of people, these models can even have a digital skeleton created to drive their motion, and be animated as CGI characters. Annie’s resulting scan was animated to rotate in place, and projected into the the plexiglas pyramid as a “hologram” for viewing through her pinhole camera.

The result of 3D printing Annie’s photogrammetry scan

  Annie would make use of Photogrammetry again the following year, when she had herself 3d scanned again, but this time for the purpose of 3D printing the resulting model for a diorama. In this instance, she was scanned using Photogrammetry in what is referred to as “T-Pose”. This is a pose where the subject stands with their arms and legs apart, so their limbs can be articulated into a different position later. After Annie’s model was generated, it was posed to have her sitting in a computer chair and working on a laptop. This model was sent to the Duderstadt Center’s J750 3D color printer to produce a 6″ high 3D printed model.

  This printer allows for full spectrum color and encases the model in a support structure that must be carefully removed, but allows for more intricate features and overhangs on the model.

Annie carefully removes the support structure from her 3D printed model

A duplicate print of Annie’s creation can now be viewed in the display case within the Duderstadt Center’s Fabrication Studio.

Passion & Violence: Anna Galeotti’s MIDEN Installation

Passion & Violence

Anna Galeotti’s MIDEN INstallation

Ph.D. Fullbright Scholar (Winter, 2014) Anna Galeotti:  exploring the concept of “foam” or “bubbles” as a possible model for audiovisual design elements and their relationships. Her art installation, “Passion and Violence in Brazil” was displayed in the Duderstadt Center’s MIDEN.

Interested in using the MIDEN to do something similar? Contact us.

Creating Cave-Like Digital Structures with Photogrammetry

Creating Cave-Like Digital Structures with Photogrammetry

Students in Professor Matias Del Campo’s Architecture Thesis class have been exploring organic, cave-like structures for use in a real-world underground architectural space.

His students were tasked with constructing textured surfaces reminiscent of cave interiors such as stalactites and stalagmites, rocky surfaces, and erosion using a variety of mediums-from spray foam to poured concrete.

These creations were then scanned at the Duderstadt Center using the process of Photogrammetry to convert their model to digital form. The resulting digital models could then be altered (retouched, scaled or mirrored, for example) by the students for design purposes when incorporating the forms into the planned space.