Practice is the only way to learn a new language. However, when learning ancient languages, such as Greek, it can be difficult to get immediate, reliable feedback on practice work. This is why Professor Pablo Alvarez in Papyrology is working with Duderstadt Center student programmer Edward Wijaya to create an app for students to practice transcribing ancient Greek manuscripts into digital writing.
The app is divided into three modes: Professor/curator mode, student mode, and discovery mode. The professor mode allows the curator to upload a picture of the manuscript and post a line by line digital transcription of the document. These are the “answers” to the document. In student mode, these manuscript are transcribed by the students. When they click the check button, the student is given a line by line comparison to the curator’s answers. Furthermore, the discovery mode allows individuals with no Greek training to learn about the letters and read descriptions in the notations used.
A wide variety of fragile manuscripts which are often inaccessible to students are available on the app allowing the students to gain experience with diverse handwriting and histories
The Michigan Ion Beam Laboratory (MIBL) was established in 1986 as part of the Department of Nuclear Engineering and Radiological Sciences in the College of Engineering. Located on the University of Michigan’s North Campus, the MIBL serves to provide unique and extensive facilities to support research and development. Recently, Professor Gary Was, Director of the MIBL reached out to the Duderstadt Center for assistance with developing content for the MIBL website to better introduce users to the capabilities of their lab as construction on a new particle accelerator reached completion.
Gary’s group was able to provide the Duderstadt Center with a scale model of the Ion Beam Laboratory generated in Inventor and a detailed synopsis of the various components and executable experiments. From there, the Stephanie O’Malley of the Duderstadt Center optimized and beautified the provided model, adding corresponding materials, labels and lighting. A series of fly-throughs, zoom-ins, and experiment animations were generated from this model that would serve to introduce visitors to the various capabilities of the lab.
These interactive animations were then integrated into the MIBL’s wordpress platform by student programmer, Yun-Tzu Chang. Visitors to the MIBL website are now able to compare the simplified digital replica of the space with actual photos of the equipment as well as run various experiments to better understand how each component functions. To learn more about the Michigan Ion Beam Laboratory and to explore the space yourself, visit their website at mibl.engin.umich.edu.
Xplore Engineering is a summer camp program designed for Engineering alumni and their children in 4th – 7th grade. Through a series of experiential workshops, participants get hands-on experience in a variety of engineering disciplines. This marked the second year the Duderstadt Center was invited to participate in the Xplore Engineering workshops, this time offering students the chance to design and then 3D print custom fashion rings. Kids were introduced to activities provided by Cubify.com that allow for the creation of simple 3D printed objects like dog tags, bracelets, or rings. Each child had an opportunity to work with their guardian to design a custom ring in the style of their choice in a workshop led by Stephanie O’Malley. Some created designs incorporating their initials, others went with unique designs or simple shapes. Once each child had completed their design, they were given an introduction to how 3D Printers work by Shawn O’Grady. Their files were assembled for printing in the Cubify software, and then each child had a chance to send their print to the Cube 3 3D Printers for printing, a unique opportunity for them to get involved in operating the technology. As they watched their creations be printed, the group was introduced to unique applications for 3D printing, from the creation of assets in stop motion movies like Coraline to the 3D printing of prosthetics! For more information on the Xplore Engineering summer camp, and other interesting opportunities with the school of Engineering, visit www.engin.umich.edu/mconnex
Proto is a natural science magazine produced by Massachusetts General Hospital in collaboration with Time Inc. Content Solutions. Launched in 2005, the magazine covers topics in the field of biomedicine and health care, targeting physicians, researchers and policy makers. In June, Proto featured an article, “Mortal Remains” that discusses alternatives to using real cadavers in the study of medicine.
Preserving human remains for use as a cadaver during a school semester has tremendous costs associated with it. The article in Proto magazine discusses options for revolutionizing this area of study, from the mention of old techniques like 17th Century anatomically correct wax models or Plastination (the process of removing fluids from the body and instead injecting a polymer) to new technology utilizing the Visible Human data, with a specific mention of the Duderstadt Center’s Virtual Cadaver.
To learn more, the full article from Proto Magazine can be found here.
The Anatomage table is a technologically advanced anatomy visualization system that allows users to explore the complex anatomy of the human body in digital form, eliminating the need for a human cadaver. The table presents a human figure at 1:1 scale, and utilizes data from the Visible Human effort with the additional capability of loading real patient data (CT, MRI, etc), making it a great resource for research, collaborative discovery, and the studying of surgical procedures. Funding to obtain the table was a collaborative effort between the schools of Dentistry, Movement Science, and Nursing although utilization is expected to expand to include Biology. Currently on display in the Duderstadt Center for exploration, the Anatomage table will be relocating to its more permanent home inside the Taubman Health Library in early July.
Robert Alexander is a Design Science Ph.D. Graduate and member of the Solar and Heliospheric Research Group. Working with NASA, Robert aims to use data audification to teach us something new about the Sun’s solar wind and is using mixed media coupled with unique interaction methods to pull viewers into the experience. The Duderstadt Center worked with Robert to put his research into video form:
Rachael Miller and Carlos Garcia discuss how their individual experiences with the Digital Media Commons (DMC) shaped their projects and ambitions. Rachael, an undergraduate in computer science, was able to expand her horizons by working in the Duderstadt Center on projects which dealt with virtual reality. She gained vital knowledge about motion capture by working in the MIDEN with the Kinect, and continues to apply her new skills to projects and internships today.
Carolos Garcia worked to combine technology and art in the form of projection mapping for his senior thesis Out of the Box. To approach the project, he began by searching for resources and found DMC to be the perfect fit. By establishing connections to staff in the 3D Lab, Groundworks, the Video Studio and many others, he was able to complete his project and go on to teach others the process as well. For a more behind the scenes look at both Carlos Garcia and Racheael Miller’s projects and process, please watch the video above!
User Story: Robert Alexander and Sonification of Data
Robert Alexander, a graduate student at the University of Michigan, represents what students can do in the Digital Media Commons (DMC), a service of the Library, if they take the time to embrace their ideas and use the resources available to them. In the video above, he talks about the projects, culture, and resources available through the Library. In particular, he mentions time spent pursuing the sonification of data for NASA research, art installations, and musical performances.
A Configurable iOS Controller for a Virtual Reality Environment
Traditionally, users navigate through 3D virtual environments via game controllers; however, game controllers are littered with ambiguously labeled buttons. And while excellent for gaming, this setup makes navigating through 3D space unnecessarily complicated for the average user. James Cheng, a sophomore in Computer Science in Engineering, has been working to resolve this headache by using touch screens such as those found in mobile devices instead game controllers. Using the Jugular Engine in development at the Duderstadt Center, he has been developing a scalable UI system that can be used for a wide range of immersive simulations. Want to cut through a volumetric brain? Select the “slice button” and start dragging. What to fly through an environment instead of walking? Switch to “Fly” mode and take off. The system aims to be highly configurable since every experience is different.
Initial development is being done for the iOS platform due to it’s consistent hardware and options for scalable user interfaces. James aims to make immersive experiences more intuitive and give the developer more options for communicating with the user. You can now say “good-bye!” to memorizing what buttons “X” and “Y” do for each simulation, and instead utilize clearly defined and simulation-specific buttons.
Technology Interventions for Health, $5M Center Award from Department of Education (UMHS, CoE, SI, Library)
Recently, the University of Michigan received a prestigious 5 million dollar Center Grant, awarded by the National Institute on Disability and Rehabilitation Research (NIDRR), part of the Department of Education.
The funds from this award will primarily be used to pursue several development, research, and training projects/studies involving technology interventions for self management of health behaviors. The newly formed center, led by Michelle Meade (PI, Rehab Medicine), will be an interdisciplinary endeavor, involving clinicians, researchers, and engineers from multiple departments on campus. This will allow UM researchers to continue to study how technology (including applications for smartphones/tablets, video games) can benefit individuals with spinal cord or neuro-developmental disabilities.
For the past three years, the Duderstadt Center has been developing SCI Hard, a transformative game facilitating skill development and promoting the ability of individuals with Spinal Cord Injuries (SCI). Through game-play, SCI Hard teaches players how to manage their health and interact more readily in home, health care and community environments. Combining practical teaching methods with the element of play, SCI Hard aims to give autonomy and confidence back to individuals who find their world drastically altered after a spinal cord injury, specifically young men (ages 15-25) with a recent SCI.
Players navigate the game by wheelchair, enabling them to face their real-world challenges: juggling doctors’ appointments, attending therapy sessions to build muscle, and learning to drive a wheelchair-accessible vehicle. Even banal tasks such as waiting in line at the DMV are covered in a way that exposes the new obstacles individuals with a SCI may face. SCI Hard tackles this difficult subject matter with optimism and an earnest of humor. (The player’s quest is ultimately to stop the evil Dr. Schrync from taking over the world with zombie animals.)
Funds from this grant will be used to study how playing games like SCI Hard can directly benefit the health or alter the behaviors of individuals with a SCI, an effort that has been supported and well received by the accessibility advocacy, gamification, and health science communities. Receiving the Center Grant allows Duderstadt Center to continue to develop SCI Hard and other projects through Android support, more health/configuration options, voice acting throughout for greater immersion, and leader boards to help track progress.
To learn more about how the grant will be used and what University of Michigan departments are involved, read The Record’s write up on this great accomplishment. For a sneak-peek at SCI Hard and what it entails, check out the video below.