Creating Cave-Like Digital Structures with Photogrammetry

Creating Cave-Like Digital Structures with Photogrammetry

Students in Professor Matias Del Campo’s Architecture Thesis class have been exploring organic, cave-like structures for use in a real-world underground architectural space.

His students were tasked with constructing textured surfaces reminiscent of cave interiors such as stalactites and stalagmites, rocky surfaces, and erosion using a variety of mediums-from spray foam to poured concrete.

These creations were then scanned at the Duderstadt Center using the process of Photogrammetry to convert their model to digital form. The resulting digital models could then be altered (retouched, scaled or mirrored, for example) by the students for design purposes when incorporating the forms into the planned space.

Xplore Engineering

Xplore Engineering

Xplore Engineering is a summer camp designed for alumni and their children entering the 4th – 7th grade. Through a series of workshops, participants get hands-on experience in a variety of engineering disciplines.  For the third year in a row the Duderstadt Center participated in Xplore Engineering by offering a workshop in 3D Modeling & 3D Printing.

Photo: Evan Dougherty, Michigan Engineering Communications & Marketing
www.engin.umich.edu

In past years, students learned how to design and print the Michigan “M” and created customized 3D printed jewelry on the Cube 3D printers. This year, students got to take full control of the design process.

Using an online app designed by John Pariseau (a Web Developer at the University of Michigan) called “Pxstl” (Pixel STL – STL being a 3D printing file format), students were able to design their own pixel art suitable for 3D printing. From designing their 3D print to operating the printers, Xplore Engineering offered a fully hands-on approach for students to learn about the 3D printing process.

If you are interested in participating in Xplore Engineering next year or would just like to learn more information, visit their website at: http://www.engin.umich.edu/mconnex/info/alumni/xplore-engineering

Duderstadt Center Joins Local Artist to Re-Create the Gateway Bridge for Michigan Engineering

Duderstadt Center Joins Local Artist to Re-Create the Gateway Bridge for Michigan Engineering

In June the Duderstadt Center was contacted by Michigan Engineering to assist with a special gift for an alumni donor. Their donor had been the designer of several bridges in the area, including the famous Michigan Gateway Bridge. The Gateway Bridge carries I-94 over eight lanes of US 24, Telegraph Road and is well recognized by commuters for it’s vibrant blue arches.

The Duderstadt Center was provided reference images and the original plans and specifications of the Gateway bridge. From this a 3D model was built and segmented to be printed on two different 3D printers: Our Dimension Elites were used to print the base, allowing for a sturdy, cost effective platform to hold the delicate arches in place. The arches, which required a much higher fidelity, were then printed in pieces using our new Projet 3D printer. The Projet is able to print at a much finer resolution and utilizes a wax support structure that can be melted away, making it the perfect printer for generating the tiny features that would be required for threading the suspension cables of the bridge.

These parts were then passed off to a very talented local diorama artist, Eric Hasiak, for further detailing, where the model was assembled, mounted, painted, had foliage placed and the delicate suspension cables strung.

.

S.C.I Hard Available in App Store

S.C.I Hard Available in App Store

Those with spinal cord injuries (SCI) encounter a drastically different world when they are released from the hospital. With varying degrees of disability, mobility and function, the world around them becomes a collection of physical and mental challenges which is a complete departure from their previous lifestyles. Whether they are in crutches or manual/automatic wheelchairs, they need to learn mobility, scheduling, and social tasks once again.

Players in S.C.I Hard must navigate a chaotic club scene to wrangle escaped tarsier monkeys

S.C.I Hard is a mobile game developed by the Duderstadt Center and designed by Dr. Michelle Meade for the Center for Technology & Independence (TIKTOC RERC) with funding from a NIDRR Field Initiated Development Grant.

Its purpose is to assist persons with spinal cord injury and develop and apply the necessary skills to keep their bodies healthy while managing the many aspects of SCI care, serving as a fun and engaging manual for individuals with spinal cord injuries learning independence. Tasks such as scheduling, mobility, and social interaction are all integrated subtly into the game. Players engage in goofy quests, from befriending roid-raging girlscouts in the park to collecting tarsier monkeys running rampant at a night club. The goal of S.C.I Hard was to be different from most medically oriented games, so players don’t feel like they’re being lectured or bombarded with  boring medical jargon, and instead learn the important concepts of their condition in a more light-hearted and engaging way.

Players shop for a handicap accessible vehicle to take their road test as they learn independence

With more than 30 different scenarios and mini-games, a full cast of odd characters to talk with, and dozens of collectible items and weapons only you can save the town from impending doom. SCI-Hard puts you, the player, in the chair of someone with a Spinal Cord Injury. Introducing you to new challenges and obstacles all while trying to save the world from legions of mutated animals. Join the fight and kick a** while sitting down!

S.C.I Hard is now available for free on Apple and Android devices through the app store, but will require participation in the subsequent study or feedback group to play:

Apple Devices: https://itunes.apple.com/us/app/sci-hard/id1050205395?mt=8

Android Devices: https://play.google.com/store/apps/details?id=edu.umich.mobile.SciHard&hl=en

To learn more about the subsequent study or to participate in the study involving S.C.I Hard, visit:
http://cthi.medicine.umich.edu/projects/tiktoc-rerc/projects/r2

Michigan Alumnus: Libraries with No Limits

Michigan Alumnus: Libraries with No Limits

The Duderstadt Center’s MIDEN is featured on the cover of the Michigan Alumnus with the caption “Libraries of the Future”. This tribute to Michigan’s high-tech libraries is continued on page 36 with an article that explores the new additions to our libraries that enhance student and instructor experiences. The article introduces new visualization stations in the Duderstadt Center (dubbed “VizHubs”) that are similar to the type of collaborative work spaces found at Google and Apple.

Read the full article here.

Steel Structures – Collaborative Learning with Oculus Rift

Steel Structures – Collaborative Learning with Oculus Rift

Civil & Environmental Engineering: Design of Metal Structures (CEE413) uses a cluster of Oculus Rift head-mounted displays to visualize buckling metal columns in virtual reality. The cluster is configured in the Duderstadt Center’s Jugular software so that the instructor leads a guided tour using a joystick while three students follow his navigation. This configuration allows the instructor to control movement around the virtual object while students are only able to look around.

Developed in a collaboration with the Visualization Studio, using the Duderstadt Center’s Jugular software this simulation can run on both an Oculus Rift or within the MIDEN.

Art Students Model With Photogrammetry

Art Students Model With Photogrammetry

The Stamps School of Art and Design features a fabrication class called Bits and Atoms. This course is taught by Sophia Brueckner and it focuses on detailed and accurate modeling for 3D digital fabrication and manufacturing.

Sophia brought her students into the Duderstadt Center to use our new Photogrammetry rig. This rig features 3 cameras that take multiple photos of a subject placed on a rotating platform. Each photograph captures a different angle of the subject. When these photos are imported into a computer program, the result is a 3D model of the subject. The program tracks the movement of reference points in each photo in order to construct this model. This process is called photogrammetry.

The art students created digital models of themselves by sitting on the rotating platform. Their 3D models were then manipulated using Rhino and Meshmixer.

Robert Alexander’s “Audification Explained” Featured on BBC World Service

Robert Alexander’s “Audification Explained” Featured on BBC World Service

Sonification is the conversion of data sets to audio files. Robert Alexander II is a Sonification Specialist working with NASA, who uses satellite recordings of the sun’s emissions to discover new solar phenomena. The Duderstadt Center worked with Robert to produce a short video explaining the concept of data audification.

Recently Robert was featured in a BBC World Service clip along with his video about making music from the sun: http://www.bbc.co.uk/programmes/p03crzsv

Lia Min: RAW, April 7 – 8

Lia Min: RAW

Research fellow Lia Min will be exhibiting “RAW”  in the 3D lab’s MIDEN April 7 & 8th from 4 – 6pm. All are welcome to attend. Lia Min’s exhibit is an intersection of art and science, assembled through her training as a neuroscientist. Her data set, commonly referred to as a “Brainbow“,  focuses on a lobe of a fruit fly brain at the base of an antenna. This visualization scales microns to centimeters to enlarge the specimen with an overall visual volume of about 1.8 x 1.8 x 0.4 meters.

Mammoth Calf Lyuba On Display

Mammoth Calf Lyuba On Display

Mammoth Calf Lyuba, a Collaborative Exploration of Data

On Nov. 17th-19th the Duderstadt Center’s Visualization Expert, Ted Hall, will be in Austin, Texas representing the Duderstadt Center at SC15, a super computing event. The technology on display will allow people in Austin to be projected into the MIDEN, the University of Michigan’s immersive virtual reality cave, allowing visitors in both Ann Arbor and in Austin to explore the body of a mummified mammoth.

The mummified remains of Lyuba.

The mammoth in question is a calf called Lyuba, found in Siberia in 2007 after being preserved underground for 50,000 years. This specimen is considered the best preserved mammoth mummy in the world, and is currently on display in the Shemanovskiy Museum and Exhibition Center in Salekhard, Russia.

University of Michigan Professor Daniel Fisher and his colleagues at the University of Michigan Museum of Paleontology arranged to have the mummy scanned using X-Ray computed tomography in Ford Motor Company’s Nondestructive Evaluation Laboratory. Adam Rountrey then applied a color map to the density data to reveal the internal anatomical structures.

Lyuba with her skeleton visible.

The Duderstadt Center got this data as an image stack for interactive volumetric visualization. The stack comprises 1,132 JPEG image slices with 762×700 pixel resolution per slice. Each of the resulting voxels is 1mm cubed.

When this data is brought into the Duderstadt Center’s Jugular software, the user can interactively slice through the mammoth’s total volume by manipulating a series of hexagonal planes, revealing the internal structure. In the MIDEN, the user can explore the mammoth in the same way while the mammoth appears to exist in front of them in three virtual dimensions. The MIDEN’s Virtual Cadaver used a similar process.

For the demo at SC15, users in Texas can occupy the same virtual space as another user in Ann Arbor’s MIDEN. Via a Kinect sensor in Austin, a 3D mesh of the user will be projected into the MIDEN alongside Lyuba allowing for simultaneous interaction and exploration of the data.

Showings will take place in the MIDEN

Sean Petty and Ted Hall simultaneously explore the Lyuba data set, with Ted’s form being projected into the virtual space of the MIDEN via Kinect sensor.

More about the Lyuba specimen:
Fisher, Daniel C.; Shirley, Ethan A.; Whalen, Christopher D.; Calamari, Zachary T.; Rountrey, Adam N.;
Tikhonov, Alexei N.; Buigues, Bernard; Lacombat, Frédéric; Grigoriev, Semyon; Lazarev, Piotr A. (2014 July). “X-ray Computed Tomography of Two Mammoth Calf Mummies.” Journal of Paleontology 88(4):664-675. DOI: http://dx.doi.org/10.1666/13-092
https://en.wikipedia.org/wiki/Lyuba
http://www.dallasnews.com/lifestyles/travel/headlines/20100418-42-000-year-old-baby-mammoth-4566.ece