Learning Jaw Surgery with Virtual Reality

Learning Jaw Surgery with Virtual Reality

Jaw surgery can be complex and there are many factors that contribute to how a procedure is done. From routine corrective surgery to reconstructive surgery, the traditional means of teaching these scenarios has been unchanged for years. In an age populated with computers and the growing popularity of virtual reality, students still find themselves moving paper cut-outs of their patients around on a table top to explore different surgical methods.

Dr. Hera Kim-Berman was inspired to change this. Working with the Duderstadt Center’s 3D artist and programmers, a more immersive and comprehensive learning experience was achieved. Hera was able to provide the Duderstadt Center with patient Dicom data. These data sets were originally comprised of a series of two-dimensional MRI images, which were converted into 3D models and then segmented just as they would be during a surgical procedure. These were then joined to a model of the patient’s skin, allowing the movement of the various bones to influence real-time changes to a person’s facial structure, now visible from any angle.

This was done for several common practice scenarios (such as correcting an extreme over or under bite, or a jaw misalignment) and then imported into the Oculus Rift, where hand tracking controls were developed to allow students to “grab” the bones for adjusting in 3D.

Before re-positioning the jaw segments, the jaw has a shallow profile.
After re-positioning of the jaw segments, the jaw is more pronounced.

As a result, students are now able to gain a more thorough understanding of the spatial movement of bones and more complex scenarios, such as extensive reconstructive surgery, could be practiced well in advance of seeing a patient for a scheduled surgery.

Extended Reality: changing the face of learning, teaching, and research

Extended Reality: changing the face of learning, teaching, and research

Written by Laurel Thomas, Michigan News

Students in a film course can evoke new emotions in an Orson Welles classic by virtually changing the camera angles in a dramatic scene.

Any one of us could take a smartphone, laptop, paper, Play-doh and an app developed at U-M, and with a little direction become a mixed reality designer. 

A patient worried about an upcoming MRI may be able put fears aside after virtually experiencing the procedure in advance. 

Dr. Jadranka Stojanovska, one of the collaborators on the virtual MRI, tries on the device

This is XR—Extended Reality—and the University of Michigan is making a major investment in how to utilize the technology to shape the future of learning. 

Recently, Provost Martin Philbert announced a three-year funded initiative led by the Center for Academic Innovation to fund XR, a term used to encompass augmented reality, virtual reality, mixed reality and other variations of computer-generated real and virtual environments and human-machine interactions. 

The Initiative will explore how XR technologies can strengthen the quality of a Michigan education, cultivate interdisciplinary practice, and enhance a national network of academic innovation. 

Throughout the next three years, the campus community will explore new ways to integrate XR technologies in support of residential and online learning and will seek to develop innovative partnerships with external organizations around XR in education.

“Michigan combines its public mission with a commitment to research excellence and innovation in education to explore how XR will change the way we teach and learn from the university of the future,” said Jeremy Nelson, new director of the XR Initiative in the Center for Academic Innovation.

Current Use of XR

 
Applications of the technology are already changing the learning experience across the university in classrooms and research labs with practical application for patients in health care settings. 

In January 2018, a group of students created the Alternative Reality Initiative to provide a community for hosting development workshops, discussing industry news, and connecting students in the greater XR ecosystem.

In Matthew Solomon‘s film course, students can alter a scene in Orson Welles’ classic “Citizen Kane.” U-M is home to one of the largest Orson Welles collections in the world.

Solomon’s concept for developers was to take a clip from the movie and model a scene to look like a virtual reality setting—almost like a video game. The goal was to bring a virtual camera in the space so students could choose shot angles to change the look and feel of the scene. 

This VR tool will be used fully next semester to help students talk about filmmaker style, meaning and choice.

“We can look at clips in class and be analytical but a tool like this can bring these lessons home a little more vividly,” said Solomon, associate professor in the Department of Film, Television and Media.

A scene from Orson Welles’ “Citizen Kane” from the point of view of a virtual camera that allows students to alter the action.

Sara Eskandari, who just graduated with a Bachelor of Arts from the Penny Stamps School of Art and a minor in Computer Science, helped develop the tool for Solomon’s class as a member of the Visualization Studio team.

“I hope students can enter an application like ‘Citizen Kane’ and feel comfortable experimenting, iterating, practicing, and learning in a low-stress environment,” Eskandari said. “Not only does this give students the feeling of being behind an old-school camera, and supplies them with practice footage to edit, but the recording experience itself removes any boundaries of reality. 

“Students can float to the ceiling to take a dramatic overhead shot with the press of a few buttons, and a moment later record an extreme close up with entirely different lighting.”

Sara Blair, vice provost for academic and faculty affairs, and the Patricia S. Yaeger Collegiate Professor of English Language and Literature, hopes to see more projects like “Citizen Kane.”

“An important part of this project, which will set it apart from experiments with XR on many other campuses, is our interest in humanities-centered perspectives to shape innovations in teaching and learning at a great liberal arts institution,” Blair said. “How can we use XR tools and platforms to help our students develop historical imagination or to help students consider the value and limits of empathy, and the way we produce knowledge of other lives than our own? 

“We hope that arts and humanities colleagues won’t just participate in this [initiative] but lead in developing deeper understandings of what we can do with XR technologies, as we think critically about our engagements with them.”

UM Faculty Embracing XR

 

Mark W. Newman, professor of information and of electrical engineering, and chair of the Augmented and Virtual Reality Steering Committee, said indications are that many faculty are thinking about ways to use the technology in teaching and research, as evidenced by progress on an Interdisciplinary Graduate Certificate Program in Augmented and Virtual Reality.

Newman chaired the group that pulled together a number of faculty working in XR to identify the scope of the work under way on campus, and to recommend ways to encourage more interdisciplinary collaboration. He’s now working with deans and others to move forward with the certificate program that would allow experiential learning and research collaborations on XR projects.

“Based on this, I can say that there is great enthusiasm across campus for increased engagement in XR and particularly in providing opportunities for students to gain experience employing these technologies in their own academic work,” Newman said, addressing the impact the technology can have on education and research.

“With a well-designed XR experience, users feel fully present in the virtual environment, and this allows them to engage their senses and bodies in ways that are difficult if not impossible to achieve with conventional screen-based interactive experiences. We’ve seen examples of how this kind of immersion can dramatically aid the communication and comprehension of otherwise challenging concepts, but so far we’re only scratching the surface in terms of understanding exactly how XR impacts users and how best to design experiences that deliver the effects intended by experience creators.

Experimentation for All

 

Encouraging everyone to explore the possibilities of mixed reality (MR) is a goal of Michael Nebeling, assistant professor in the School of Information, who has developed unique tools that can turn just about anyone into an augmented reality designer using his ProtoAR or 360proto software.

Most AR projects begin with a two-dimensional design on paper that are then made into a 3D model, typically by a team of experienced 3D artists and programmers. 

Michael Nebeling’s mixed reality app for everyone.

With Nebeling’s ProtoAR app content can be sketched on paper, or molded with Play-doh, then the designer either moves the camera around the object or spins the piece in front of the lens to create motion. ProtoAR then blends the physical and digital content to come up with various AR applications.

Using his latest tool, 360proto, they can even make the paper sketches interactive so that users can experience the AR app live on smartphones and headsets, without

Michael Nebeling’s mixed reality app for everyone.

spending hours and hours on refining and implementing the design in code.

These are the kind of technologies that not only allow his students to learn about AR/VR in his courses, but also have practical applications. For example, people can

experience their dream kitchen at  home, rather than having to use their imaginations when clicking things together on home improvement sites. He also is working on getting many solutions directly into future web browsers so that people can access AR/VR modes when visiting home improvement sites, cooking a recipe in the kitchen, planning a weekend trip with museum or gallery visits, or when reading articles on wikipedia or the news.

Nebeling is committed to “making mixed reality a thing that designers do and users want.”

“As a researcher, I can see that mixed reality has the potential to fundamentally change the way designers create interfaces and users interact with information,” he said. “As a user of current AR/VR applications, however, it’s difficult to see that potential even for me.”

He wants to enable a future in which “mixed reality will be mainstream, available and accessible to anyone, at the snap of a finger. Where everybody will be able to ‘play,’ be it as consumer or producer.”

 

XR and the Patient Experience

A team in the Department of Radiology, in collaboration with the Duderstadt Center Visualization Studio, has developed a Virtual Reality tool to simulate an MRI, with the goal of reducing last minute cancellations due to claustrophobia that occur in an estimated 4-14% of patients. The clinical trial is currently enrolling patients. 
VR MRI Machine

“The collaboration with the Duderstadt team has enabled us to develop a cutting-edge tool that allows patients to truly experience an MRI before having a scan,” said Dr. Richard K.J. Brown, professor of radiology. The patient puts on a headset and is ‘virtually transported’ into an MRI tube. A calming voice explains the MRI exam, as the patient hears the realistic sounds of the magnet in motion, simulating an exam experience. 

The team also is developing an Augmented Reality tool to improve the safety of CT-guided biopsies.

Team members include doctors Brown, Jadranka Stojanovska, Matt Davenport, Ella Kazerooni, Elaine Caoili from Radiology, and Dan Fessahazion, Sean Petty, Stephanie O’Malley,Theodore Hall and several students from the Visualization Studio. 

“The Duderstadt Center and the Visualization Studio exists to foster exactly these kinds of collaborations,” said Daniel Fessahazion, center’s associate director for emerging technologies. “We have a deep understanding of the technology and collaborate with faculty to explore its applicability to create unique solutions.” 

Dr. Elaine Caoili, Saroja Adusumilli Collegiate Professor of Radiology, demonstrates and Augmented Reality tool under development that will improve the safety of CT-guided biopsies.

AI’s Nelson said the first step of this new initiative is to assess and convene early innovators in XR from across the university to shape how this technology may best support serve residential and online learning. 

“We have a unique opportunity with this campus-wide initiative to build upon the efforts of engaged students, world-class faculty, and our diverse alumni network to impact the future of learning,” he said.

Customer Discovery Using 360 Video

Customer Discovery Using 360 Video

Year after year, students in Professor Dawn White’s Entrepreneurship 411 course are tasked with doing a “customer discovery” – a process where students interested in creating a business, interview professionals in a given field to assess their needs and how products they develop could address these needs and alleviate some of the difficulties they encounter on a daily basis.

Often when given this assignment, students would defer to their peers for feedback instead of reaching out to strangers working in these fields of interest. This demographic being so similar to the students themselves, would result in a fairly biased outcome that didn’t truly get to the root issue of why someone might want or need a specific product. Looking for an alternative approach, Dawn teamed up with her long time friend, Professor Alison Bailey, who teaches DEI at the University, and Aileen Huang-Saad from Biomedical Engineering, and approached the Duderstadt Center with their idea: What if students could interact with a simulated and more diverse professional to conduct their customer discovery?

After exploring the many routes this could take for development, including things like motion capture-driven CGI avatars, 360 video became the decided platform on which to create this simulation. 360 Video viewed within an Oculus Rift VR headset ultimately gave the highest sense of realism and immersion when conducting an interview, which was important for making the interview process feel authentic.

Up until this point, 360 videos were largely passive experiences. They did not allow users to tailor the experience based on their choices or interact with the scene in any way. This Customer Discovery project required the 360 videos to be responsive – when a student asked a recognized customer discovery question, the appropriate video response would need to be triggered to play. And to do this, the development required both some programming logic to trigger different videos but also an integrated voice recognition software so students could ask a question out loud and have the speech recognized within the application.

Dawn and Alison sourced three professionals to serve as their simulated actors for this project:

Fritz discusses his career as an IT professional

Fritz – Fritz is a young black man with a career as an IT professional


Cristina – Cristina is a middle aged woman with a noticeable accent, working in education


Charles – Charles is a white adult man employed as a barista

These actors were chosen for their authenticity and diversity, having qualities that may lead interviewers to make certain assumptions or expose biases in their interactions with them. With the help of talented students at the Visualization Studio, these professionals were filmed responding to various customer discovery questions using the Ricoh Theta 360 camera and a spatial microphone (this allows for spatial audio in VR, so you feel like the sound is coming from a specific direction where the actor is sitting). For footage of one response to be blended with the next, the actors had to remember to revert their hands and face to the same pose between responses so the footage could be aligned. They also were filmed giving generic responses to any unplanned questions that may get asked as well as twiddling their thumbs and patiently waiting – footage that could be looped to fill any idle time between questions.

Once the footage was acquired, the frame ranges for each response were noted and passed off to programmers to implement into the Duderstadt Center’s in-house VR rendering software, Jugular. As an initial prototype of the concept, the application was originally intended to run as a proctored simulation – students engaging in the simulation would wear an Oculus Rift and ask their questions out loud, with the proctor listening in and triggering the appropriate actor response using keyboard controls. For a more natural feel, Dawn was interested in exploring voice recognition to make the process more automated.

Within Jugular, students view an interactive 360 video where they are seated across from one of three professionals available for interviewing. Using the embedded microphone in the Oculus Rift they are able to ask questions that are recognized using Dialogue Flow, that in turn trigger the appropriate video response, allowing students to conduct mock interviews.

With Dawn employing some computer science students to tackle the voice recognition element over the summer, they were able to integrate this feature into Jugular using the Dialogue Flow agent with Python scripts. Students could now be immersed in an Oculus Rift, speaking to a 360 video filmed actor, and have their voice interpreted as they asked their questions out loud, using the embedded microphone on the Rift.

Upon it’s completion, the Customer Discovery application was piloted in the Visualization Studio with Dawn’s students for the Winter 2019 semester.

The Jewish Tradition of Tsedakah as Exemplified in Pushkes – Online Exhibit

The Jewish Tradition of Tsedakah as Exemplified in Pushkes – Online Exhibit

The pushke exhibit first appeared at the Jean & Samuel Frankel Center for Judaic Studies in the summer of 2015. The exhibit was composed of 40 pushkes (charitable donation boxes) of all shapes and sizes, situated in a series of display cases. The many diverse charity boxes reflect the breadth of the Jewish Heritage Collection Dedicated to Mark and Dave Harris, and illustrate the value of giving in Jewish communities throughout the world. Prior to being moved into storage for safekeeping, the collection underwent a lengthy scanning processes with help from the Duderstadt Center, to convert the collection into digitized 3D objects expanding accessibility by allowing the exhibit to be preserved and view-able online.

The Pushke Collection was digitized by the Duderstadt Center using the process of Photogrammetry. In this process, several high fidelity digital photographs are captured 360 degrees around the subject. These photos are analyzed by a computer algorithm to identify matching features on a per-pixel basis between photographs. These identified features are then used to triangulate a position within 3D space, allowing a 3D model of the object to be generated. The color information from the initial photographs is then mapped to the surface of the object in order to achieve a realistic digital replica. Select pieces of the Pushke collection have been further refined to correct imperfections resulting from the capturing process by an artist using digital sculpting and painting software, with the entire digital collection also being optimized for more efficient viewing on the web.

A web viewer was then developed and integrated into the Frankel Center’s WordPress site, to display and allow manipulation of the various pushkes in the collection. The web viewer allows each pushke to be rotated 360 degrees, and for the pushkes to be zoomed in or out, allowing for more detailed viewing than what traditional photographs typically allow.

The result of this effort, the Frankel Center’s online exhibit, “Charity Saves from Death: The Jewish Tradition of Tsedakah as Exemplified in Pushkes” can be viewed here: https://exhibits.judaic.lsa.umich.edu/pushke

Leisure & Luxury in the Age of Nero: VR Exhibit for the Kelsey Museum

Leisure & Luxury in the Age of Nero: VR Exhibit for the Kelsey Museum

As part of the Kelsey museum’s most grandiose exhibition to date, Leisure & Luxury in the Age of Nero: The Villas of Oplontis Near Pompeii features over 230 artifacts from the ancient world. These artifacts originate from the ancient villa of Oplontis, an area near Pompeii that was destroyed when Mt. Vesuvius erupted.

Real world location of the ancient villa of Oplontis

The traveling exhibit explores the lavish lifestyle and economic interests of ancient Rome’s wealthiest. This location is currently being excavated and is currently off limits to the general public, but as part of the Kelsey’s exhibit, visitors will get to experience the location with the assistance of virtual reality headsets like the Oculus Rift and tablet devices.

The Duderstadt Center worked closely with curator Elaine Gazda as well as the Oplontis Project team from the University of Texas to optimize a virtual re-creation for the Oculus Rift & MIDEN and to generate panoramic viewers for tablet devices. The virtual environment uses high resolution photos and scan data captured on location, mapped to the surface of 3D models to give a very real sense of being at the real-world location.

Visitors to the Kelsey can navigate Oplontis in virtual reality through the use of an Oculus Rift headset, or through panoramas presented on tablet devices.

Visitors to the Kelsey can traverse this recreation using the Rift, or they can travel to the Duderstadt to experience it in the MIDEN – and not only can viewers experience the villa as they appear in modern day-they can also toggle on an artist’s re-creation of what the villas would have looked like before their destruction. In the re-created version of the scene, the ornate murals covering the walls of the villa are restored and foliage and ornate statues populate the scene. Alongside the virtual reality experience, the Kelsey Museum will also house a physically reconstructed replica of one of the rooms found in the villa as part of the exhibit.

Leisure & Luxury in the Age of Nero: The Villas of Oplontis Near Pompeii is a traveling exhibit that will also be on display at the Museum of the Rockies at the Montana State University, Bozeman, and the Smith College Museum of Art in Northampton, Massachusetts.

On Display at the Kelsey Museum, Leisure & Luxury in the Age of Nero: The Villas of Oplontis Near Pompeii

Creating Cave-Like Digital Structures with Photogrammetry

Creating Cave-Like Digital Structures with Photogrammetry

Students in Professor Matias Del Campo’s Architecture Thesis class have been exploring organic, cave-like structures for use in a real-world underground architectural space.

His students were tasked with constructing textured surfaces reminiscent of cave interiors such as stalactites and stalagmites, rocky surfaces, and erosion using a variety of mediums-from spray foam to poured concrete.

These creations were then scanned at the Duderstadt Center using the process of Photogrammetry to convert their model to digital form. The resulting digital models could then be altered (retouched, scaled or mirrored, for example) by the students for design purposes when incorporating the forms into the planned space.

Xplore Engineering

Xplore Engineering

Xplore Engineering is a summer camp designed for alumni and their children entering the 4th – 7th grade. Through a series of workshops, participants get hands-on experience in a variety of engineering disciplines.  For the third year in a row the Duderstadt Center participated in Xplore Engineering by offering a workshop in 3D Modeling & 3D Printing.

Photo: Evan Dougherty, Michigan Engineering Communications & Marketing
www.engin.umich.edu

In past years, students learned how to design and print the Michigan “M” and created customized 3D printed jewelry on the Cube 3D printers. This year, students got to take full control of the design process.

Using an online app designed by John Pariseau (a Web Developer at the University of Michigan) called “Pxstl” (Pixel STL – STL being a 3D printing file format), students were able to design their own pixel art suitable for 3D printing. From designing their 3D print to operating the printers, Xplore Engineering offered a fully hands-on approach for students to learn about the 3D printing process.

If you are interested in participating in Xplore Engineering next year or would just like to learn more information, visit their website at: http://www.engin.umich.edu/mconnex/info/alumni/xplore-engineering

Steel Structures – Collaborative Learning with Oculus Rift

Steel Structures – Collaborative Learning with Oculus Rift

Civil & Environmental Engineering: Design of Metal Structures (CEE413) uses a cluster of Oculus Rift head-mounted displays to visualize buckling metal columns in virtual reality. The cluster is configured in the Duderstadt Center’s Jugular software so that the instructor leads a guided tour using a joystick while three students follow his navigation. This configuration allows the instructor to control movement around the virtual object while students are only able to look around.

Developed in a collaboration with the Visualization Studio, using the Duderstadt Center’s Jugular software this simulation can run on both an Oculus Rift or within the MIDEN.

Art Students Model With Photogrammetry

Art Students Model With Photogrammetry

The Stamps School of Art and Design features a fabrication class called Bits and Atoms. This course is taught by Sophia Brueckner and it focuses on detailed and accurate modeling for 3D digital fabrication and manufacturing.

Sophia brought her students into the Duderstadt Center to use our new Photogrammetry rig. This rig features 3 cameras that take multiple photos of a subject placed on a rotating platform. Each photograph captures a different angle of the subject. When these photos are imported into a computer program, the result is a 3D model of the subject. The program tracks the movement of reference points in each photo in order to construct this model. This process is called photogrammetry.

The art students created digital models of themselves by sitting on the rotating platform. Their 3D models were then manipulated using Rhino and Meshmixer.

Lia Min: RAW, April 7 – 8

Lia Min: RAW

Research fellow Lia Min will be exhibiting “RAW”  in the 3D lab’s MIDEN April 7 & 8th from 4 – 6pm. All are welcome to attend. Lia Min’s exhibit is an intersection of art and science, assembled through her training as a neuroscientist. Her data set, commonly referred to as a “Brainbow“,  focuses on a lobe of a fruit fly brain at the base of an antenna. This visualization scales microns to centimeters to enlarge the specimen with an overall visual volume of about 1.8 x 1.8 x 0.4 meters.